Broken-Down-Models

Shai Berger (Matific)

Feb 05, 2023

What is this?

1.1 How? e

Using Broken-Down-Models

2.1 Installation,
22 Usage e

Rewriting Models
Migrations

Optimizing Queries

51 Generally Lo
52 Ifi'stheUsermodel

What is really going on here

6.1 Generalldea
6.2 Problems (and solutions)

Benchmarks

Package reference

8.1 bdmodelsmodels
8.2 bdmodelsfields.

8.3 bdmodels.migration_ops

Contribution Guide

9.1 Community
9.2 Technically

10 Indices and tables
Python Module Index

Index

CONTENTS:

......................... 3

13

......................... 13
......................... 14

17

......................... 17
... 18

21

23

......................... 23
......................... 24
......................... 25

27

......................... 27
......................... 28

29

31

33

Broken-Down-Models

A library to help you break a large Django model down, transparently; that is, changing the structure of the model,
while minimizing the changes this forces upon other parts of your project code.

CONTENTS: 1

Broken-Down-Models

2 CONTENTS:

CHAPTER
ONE

WHAT IS THIS?

In a Django project that goes on for several years, models tend to grow and accumulate fields. If you aren’t very
disciplined about this, you wake up one day, and find that one of your central tables, one with millions of rows, has 43
columns, including some TextFields. Most of them are not required most of the time, but the default (and common)
use is to fetch all of them; also, since this table is queried a lot, the mere fact that it has so many columns makes some
of the access slower.

When you realize that, you want to break it into components, such that only a few, most-important columns will par-
ticipate in the large searches, while further details will be searched and fetched only when needed.

But that is a scary proposition — it might involve subtle code changes, break not just field access but also ORM queries. . .
and this is a central model. The change imagined is open-heart surgery on a large project. Maybe, if we look the other
way, it won’t bother us too much. ..

Broken-Down-Models is here to help you. This is a library which can help you refactor your large model into a set of
smaller ones, each with its own database table, while most of your project code remains unchanged.

1.1 How?

Django already includes a mechanism where fields for one model are stored in more than one table: Multi Table
Inheritance (also known as MTI). That’s what happens when we do “normal” inheritance of models, without specifying
anything special in the Meta of either of the models.

Python also supports Multiple Inheritance — one class can have many parent classes. And this also works with Django’s
MTI - we can have multiple MTI.

Usually, when we think of a “core” set of attributes with different extensions, and we decide to implement it with
MTI, we put this core set in a parent model, and make the extensions subclass it. But in the situation where we try to
break down an existing model, this would mean that code which currently uses the large model will have to change, to
recognize the new parts.

Broken-Down-Models puts this idea on its head: The extensions become parent models, and the core set is defined
in a model which inherits them all. This way, all the fields are still fields of of the model we started with, for all
purposes — including not just attribute access, but also ORM queries. For this to really work well, though, some further
modifications are required; this is why this library exists.

Broken-Down-Models

4 Chapter 1. What is this?

CHAPTER
TWO

USING BROKEN-DOWN-MODELS

2.1 Installation

No surprises here:

pip install broken-down-models

You do not need to add anything to INSTALLED_APPS or any other Django setting.

2.1.1 Requirements

Broken-Down-Models is tested against CPython 3.8, 3.9 and 3.10, with Django 3.2, 4.0 and 4.1 (and the tip of the main
branch), using PostgreSQL and SQLite.

When using SQLite, Some migration operations require SQLite >= 3.3.0. See CopyDataToPartial for details — as
far as we’re aware, that is also the main hurdle to using the library with MySQL, Oracle, or any other DBMS (and like
any good hurdle, hopping over it is not hard).

2.2 Usage

Assume we have a large, central model:

class Central (models.Model):
a = models.IntegerField()

b = models.CharField(max_length=100)
¢ = models.DateTimeField()

...

z = models.IPV4AddressField()

We would like to break it down into groups of fields. Let’s say that the first four fields are really core, useful almost
whenever the model is used, but we want to separate out the others in groups of 5-6. We will rebuild the model as a set
of related models.

When we are done, the Central model will have only five columns in its table — the four chosen fields, and id. Each
of the other groups of fields will have their own model and be stored in their own table. The behavior of ORM queries
will be changed, but (up to fringe limitations, see below) the changes will only affect performance, not semantics:

* For queries that just refer to the model (using any of the fields), Django will arrange the necessary joins for us
behind the scenes.

Broken-Down-Models

* Queries that fetch Central objects will, by default, only bring in the core fields; the rest of the fields will be
deferred — that is, the field value will be loaded from the database only when it is accessed, much like the way
a ForeignKey is handled.

This deferral is special, though: If any of the fields in a group is accessed, the whole group will be fetched.

2.2.1 Limitations

There is one obvious and hard limitation: We only handle objects accessed through the ORM, of course; raw SQL
queries will not be magically adapted.

The library makes internal calls to QuerySet.only(); user calls to only () or defer () on querysets of broken-down
models may interact with these calls in surprising ways.

The library does not handle the database constraints that should be imposed between a model and its broken-out com-
ponents.

Updating model fields with values based on other fields using F ()-expressions does not work across MTI relations —
this is a Django limitation; see Django tickets 30044, 33091 and 25643. When breaking down a model with this library,
one may cause working code to break over this: If the code performs an update using F () -expressions, and one of the
relevant fields is moved to a parent model, then after the change, the code will run into the Django issues.

Bulk creation for models with multi-table inheritance is not yet supported by Django. This library provides a partial
implementation, so common uses of bulk_create() should continue to work after breaking a model down. However,
updating on conflict (as is supported in Django>=4.1) is not supported.

2.2.2 The Refactoring Process

The rewrite process involves two required steps — rewriting the models, and providing migrations — and a recommended
step of optimizing queries. The next pages describe each of these in detail.

6 Chapter 2. Using Broken-Down-Models

https://docs.djangoproject.com/en/3.2/ref/models/querysets/#django.db.models.query.QuerySet.defer
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.2/ref/models/querysets/#django.db.models.query.QuerySet.only
https://code.djangoproject.com/ticket/30044
https://code.djangoproject.com/ticket/33091
https://code.djangoproject.com/ticket/25643

CHAPTER
THREE

REWRITING MODELS

Note: This continues the example defined in the previous page.

As mentioned previously, the separate groups are going to be parent classes for the new Central, so we’ll have to
define them first. These will be completely regular models, with one exception: We need to explicitly define their
primary key, and give each of these primary keys a unique name. We can base this name on the model name; so we’ll
have something like:

class Groupl(models.Model):
groupl_id = models.IntegerField(primary_key=True) # New field
e = models.BooleanField() # This field is taken from Central
models.TextField() # This too

f
j models.UUIDField(null=True)

Note that we’re using an IntegerField, and not an AutoField, for the primary key; this is because we still assume
that objects of this part of the Central model will not be created in isolation, but only as part of a complete Central
object. In such creation, the primary key value will come from the complete object, and there is no need to generate
it for each of the parts. In fact, an AutoField should work just as well — one is still allowed to set the value of an
AutoField explicitly, and that is what a BrokenDownModel will do for its parents behind the scenes.

We’ll define similarly the next groups:

class Group2(models.Model):
group2_id = models.IntegerField(primary_key=True)
k = models.BooleanField()
...
o = models.ForeignKey(SomeOtherModel, null=True, on_delete-models.CASCADE)

and Group3, and...

class Group4(models.Model):
group4_id = models.IntegerField(primary_key=True)
z = models.IPV4AddressField()

Now we can finally re-define the original model. We’ll need to import some names from the library:

from bdmodels.fields import VirtualParentLink
from bdmodels.models import BrokenDownModel

and then:

https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.IntegerField
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.AutoField
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.AutoField
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.AutoField

Broken-Down-Models

class Central (BrokenDownModel, Groupl, Group2, Group3, Group4):
Add an explicit PK here too
id = models.AutoField(primary_key=True)

Add links to the parents

groupl_ptr = VirtualParentLink(Groupl)
group2_ptr = VirtualParentLink(Group2)
group3_ptr = VirtualParentLink(Group3)
group4_ptr = VirtualParentLink(Group4)

The original core fields we decided to leave in the model
models.IntegerField()

models.CharField(max_length=100)

models.DateTimeField()

= models.DateField()

QN T o H
1

Note that we had to define the primary key explicitly here as well. This is because Django’s default behavior for MTI
is to use the parent-link to the first parent as the PK of the child. We do not want this.

The VirtualPrentLink fields defined explicitly, replace similarly-named OneToOneField fields which Django
would generate, by default, to connect a child model with its MTI parents. They differ from such fields by all us-
ing the id column in the database — regular parent-link OneToOneField fields would each define their own column,
although for our use case these columns would all be holding the same value (same as id).

With these definitions, our app is essentially ready to work against a database where the Central model has been
broken down (up to some limitations, see below). But we still have to bring our database to this state. It is now time to
talk about. ..

8 Chapter 3. Rewriting Models

https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.OneToOneField

CHAPTER
FOUR

MIGRATIONS

Note: This continues the example started before.

If we go and change an existing model, central to our database, in the ways discussed in Rewriting Models, we need to
change our database schema accordingly. As usual with Django, we will want to do this using migrations.

Regretfully, at the time this is written, there is no way to make Django’s makemigrations aware of field or model
types requiring special migration operations, so we will need to do some manual migration editing.

That said, makemigrations will still give us a good starting point, even if it will throw some fits on the way there.
If we run it, having changed the models, some of the changes it sees are additions of VirtualParentLink fields
named *_ptr to the original model. These *_ptr fields pose a problem to the automatic migration creator: As far as
it understands, these are new non-nullable fields, and as such, they require a default value; it will ask us questions like:

You are trying to add a non-nullable field 'groupl_ptr' to central without
a default; we can't do that (the database needs something to populate
existing rows).

Please select a fix:

1) Provide a one-off default now (will be set on all existing rows with a
null value for this column)

2) Quit, and let me add a default in models.py

Select an option:

As explained above, these fields will not actually be represented by new columns in the database, and they do not need
a default. But makemigrations cannot know that. To pacify it, we’ll just give it a one-off default of 0, and edit this
away later.

Select an option: 1

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so you can
do e.g. timezone.now

Type 'exit' to exit this prompt

>>> 0

With this, makemigrations will manage to generate a migration. It will include the following changes:
* The new parent models are created

* The fields that were moved to parent models are removed from the existing model

https://docs.djangoproject.com/en/3.2/topics/migrations/
https://docs.djangoproject.com/en/3.2/ref/django-admin/#django-admin-makemigrations
https://docs.djangoproject.com/en/3.2/ref/django-admin/#django-admin-makemigrations
https://docs.djangoproject.com/en/3.2/ref/django-admin/#django-admin-makemigrations
https://docs.djangoproject.com/en/3.2/ref/django-admin/#django-admin-makemigrations

Broken-Down-Models

* The id field on the existing model is changed to a VirtualParentLink (it really isn’t, details shortly)
e The *_ptr VirtualParentLink fields are added to the existing model

It is interesting to note that migrations do not automatically change the model’s superclass (list), and we will not change
it either.

The migrations we want comprise four steps for each of the new parent models:
1. Create the new parent model.
2. Add the virtual parent link.
3. Transfer data from the existing model to the new parent model.
4. Remove from the existing model the fields that were duplicated on the parent.

The definition we provided for the id field exactly mimics the default provided by Django; it is there because without it,
Django will try to use one of the parent-link keys as a PK. The generated operation to change it to a relation is created
because Django tends to treat a relation field and the (usually hidden) *_id field it relies on as interchangeable; when
it sees new relations which use id as their base field, it gets confused into thinking that id is the relation field. But we
know better; we don’t want id changed in any way by the migration, and we will remove this operation.

The order of VirtualParentLink fields

For reasons related to the above, Django’s migration auto-detector gets confused when the order of
VirtualParentLink fields in the model differs from the order in which the migrations add them to the model. When
this happens, it insists on re-adding the AlterField operation (and if we do not add it, Django will complain about
changes in the models not being reflected in migrations). Until this limitation is overcome, we will just need to keep
these fields in the order in which they were added.

With all this in mind, we will edit the migration accordingly:

1. The new parent models are exactly as we need them, leave them be; remove the AlterField operation against
the original model’s id field.

2. We want the virtual parent link fields added, but we want them added only in the model and not in the database
(that is why they are “virtual”). So, we want to replace the generated operations, which look like:

migrations.AddField(
model_name="'central',
name="'groupl_ptr',
field=bdmodels. fields.VirtualParentLink(default=0, from_field='id', on_
—.delete=django.db.models.deletion.CASCADE, to='app.Groupl'),
preserve_default=False,

),

with operations that do the right thing. The library provides this migration operation, we need to import it:

from bdmodels import migration_ops

and then we can use it:

migration_ops.AddVirtualField(

model_name='"central',

name="groupl_ptr',

field=bdmodels. fields.VirtualParentLink(from_field="id', on_delete=django.db.
—models.deletion.CASCADE, to='app.Groupl'),
s

10 Chapter 4. Migrations

https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.AlterField

Broken-Down-Models

Note, that the default was removed from the field, and there is no preserve_default=False argument.

3. Now we’d like to transfer data from the existing full model to the new partial models. It is considered best
practice to keep data-moving operations in separate migrations, and avoid mixing them with schema-changing

operations. We’ll make a new, empty migration to hold this operation:

$./manage.py makemigrations --empty -n breakdown_copy app

Usually, data-moving in migrations is done with RunPython operations running functions which use the Django
ORM. However, copying what is essentially a whole table efficiently requires using the SQL INSERT-SELECT
construct, which is currently not supported by the ORM. We could write a RunSQL operation, but the library
provides its own migration operation which writes the raw SQL for us, and even includes the reverse side of the

operation.

As above, we will need to import the library migration operations:

from bdmodels import migration_ops

Then, we can write concise and clear operations:

operations = [
migration_ops.CopyDataToPartial(
full_model_name='Central',
part_model_name='Groupl',

),
...

. Finally, we can remove the now-redundant fields from the old model. We create another empty migration:

$./manage.py makemigrations --empty -n breakdown_cleanup app

and move into it all the RemoveField operations from the migration which makemigrations made for us.

If we look at it from the angle of the generated migration, we:

. Kept the CreateModel operations;

. Removed the AlterField operation;

. Changed the AddField operations into AddVirtualField operations;
. Added a second migration with data-copying operations;

. Moved the RemoveField operations to a third migration which we added.

11

https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.RunPython
https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.RunSQL
https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.RemoveField
https://docs.djangoproject.com/en/3.2/ref/django-admin/#django-admin-makemigrations

Broken-Down-Models

12 Chapter 4. Migrations

CHAPTER
FIVE

OPTIMIZING QUERIES

Breaking down a model is a trade-off: The main table will become smaller, queries which use or reference only the
“core” fields are likely to become faster; but code which uses fields outside of the core can become much slower, and
even trigger the infamous “1+N” behavior — processing a set of objects, which were all selected in one query before
the breaking-down refactoring, may now require an additional query-per-object, if it involves fetching a field that has
been moved out to a parent.

The library provides tools to overcome this — we can use select_related() to make specific queries join-in specific
parents, or even fetch_all_parents() to join all of them; but in a large project, how can we find the places where
this is needed?

5.1 Generally

nplusone is a library for detecting query inefficiencies in Python ORMs, which supports the Django ORM. In general,
testing your code with this library can help you detect cases where your code is making 1+N queries. However, it is
written for the typical case, where the problem is caused by following Foreign Keys. The way we set things up here,
1+N queries are caused by accessing previously-deferred fields, which are not necessarily Foreign Keys; nplusone
cannot detect these.

While working on broken-down-models, we added to nplusone the feature of detecting instances of 1+N created by
accessing deferred fields. Sadly, it seems that the original library is abandoned, and our pull-requests to improve it are
not likely to be merged. But our fork is out there for your use.

Besides detecting more cases, this fork also adds a TraceNotifier which can be used to get reports with tracebacks
when running your test-suite.

To do this, modify your manage . py as follows:

1. Add relevant imports:

from nplusone.core import profiler, notifiers
import nplusone.ext.django # noga -- required for profilers

2. Define a Profiler class, similar to this:

class Profiler(profiler.Profiler):
def __init__(self, whitelist=None):
from nplusone.ext.django.middleware import DjangoRule
self.whitelist = [
DjangoRule(**item)
for item in (whitelist or [])

(continues on next page)

13

https://pypi.org/project/nplusone/
https://pypi.org/project/nplusone/
https://pypi.org/project/nplusone/
https://github.com/SlateScience/nplusone/tree/feature/deferred-fields

Broken-Down-Models

(continued from previous page)

self.notifier = notifiers.TraceNotifier(
{"'NPLUSONE_LOG_LEVEL': logging.WARN}
)

def notify(self, message):
if not message.match(self.whitelist):
self.notifier.notify(message)

3. Apply the profiler to management command execution; replace the default

execute_from_command_line(sys.argv)

with:

with Profiler():
execute_from_command_line(sys.argv)

With this, every potential case of 1+N queries will be logged with a full stack-trace, so you can find exactly where it
comes from.

5.2 If it’s the User model

request.user is often used in all sort of ways, and a broken-down user-model will, by default, cause many queries
to be triggered for the acting user in the views — and, because it is placed in the request before your view gets control,
you cannot fix these with code in the view.

If most of the uses of request.user only touch the core attributes, then that is fine. But if not, you may want to make
sure that request.user is fetched with all the parts. If so, there’s two (kinds of) places to take care of:

One is the fetching of users for authentication; django.contrib.auth uses, for this:

user = UserModel._default_manager.get_by_natural_key(username)

Since the other common use for get_by_natural_key() is for the loaddata and dumpdata commands, which deal
with serialization, and where the whole user object is required as well, it makes sense to override the User model’s
default manager’s get_by_natural_key() with something like:

def get_by_natural_key(self, username):
return self.fetch_all_parents().get(**{self.model.USERNAME_FIELD: username})

113

The other is the code that fetches the user for the request when they’re already logged in; this is “a
kind of place” — the get_user() method of authentication backends. The canonical example is of course
django.contrib.auth.backends.ModelBackend, whose method reads:

def get_user(self, user_id):
try:
user = UserModel._default_manager.get(pk=user_id)
except UserModel .DoesNotExist:
return None
return user if self.user_can_authenticate(user) else None

For broken-down user models, you may prefer a backend with something like:

14 Chapter 5. Optimizing Queries

Broken-Down-Models

def get_user(self, user_id):
"""Overridden for BrokenDownModel support; used for fetching the request user

user_manager = UserModel._default_manager.fetch_all_parents()
try:

user = user_manager.get(pk=user_id)
except UserModel.DoesNotExist:

return None
return user if self.user_can_authenticate(user) else None

o

5.2. If it’s the User model

15

Broken-Down-Models

16 Chapter 5. Optimizing Queries

CHAPTER
SIX

WHAT IS REALLY GOING ON HERE

6.1 General Idea

Django already includes a mechanism where fields for one model are stored in more than one table — Multi Table
Inheritance. That’s what happens when we do “normal” inheritance of models, without specifying anything special in
the Meta of either of the models.

If we have:

from django.db import models

class Parent(models.Model):
parental = models.IntegerField()

class Child(Parent):
childish = models.BooleanField()

Then we can use the parental field on the Child class as if it was defined there. Multiple inheritance is also supported,
and the following almost works:

from django.db import models

class Mother(models.Model):
motherly = models.IntegerField()

class Father(models.Model):
fatherly = models.IntegerField()

This DOES NOT WORK, just almost
class Child(Mother, Father):
locale = models.ForeignKey("localization.Locale")

So — if we fix the little bump (details below), then we can break our large model into many small pieces. We can throw
any field that’s currently on the large model into its own model (and its own table); the large model will then subclass
all of them. In principle, no other code will have to change.

Of course, that is a little too good to be true. Let us consider the...

17

Broken-Down-Models

6.2 Problems (and solutions)

6.2.1 Field clash

The first problem is that, as noted above, the models described above don’t actually work. both Mother and Father
have a field named id (the automatically generated PK), and the child cannot have two of them.

So, we just need to define explicitly the primary key fields on the parent tables:

from django.db import models

class Mother(models.Model):
mother_id = models.IntegerField(primary_key=True)
motherly = models.IntegerField()

class Father(models.Model):
father_id = models.IntegerField(primary_key=True)
fatherly = models.IntegerField()

Now this does work
class Child(Mother, Father):
locale = models.ForeignKey("localization.Locale")

6.2.2 Implicit Joins

The above already allows us to reduce the size of the large table, which we assume is the biggest problem. But still,
with this, by default, queries on the large model would join in all of the parts (as if we called select_related() with
all of them); in most use-cases, this is redundant and wasteful.

The solution is to limit the fields, by default, to the ones on the actual child model, by using the model _meta API to
figure out which fields we want, and the QuerySet only () method. A special manager class for broken-down models
has a get_queryset () which sets this up.

6.2.3 Broken select_related()

The solution to implicit joins works well. Actually, a little too well — in some cases, we’d want to have some
part of the original model select_related()-ed, but naively using only() in the manager blocks it: Calling
select_related() when all the relevant fields are deferred (by the only () call) achieves nothing. That is, as de-
scribed so far,

Child.objects.select_related('locale')

works as expected, but

Child.objects.select_related('mother_ptr')

does not. Some special handling of select_related() is needed to make it behave as expected; thus, we need the
special manager to be based on a special QuerySet class, and not just apply public API calls on a regular QuerySet.

18 Chapter 6. What is really going on here

Broken-Down-Models

6.2.4 Make accessed fields fetch their whole parent

With the above scheme, fields coming from parents all become deferred. This means that, when such a field is accessed
for the first time, a database query is made to fetch its value. We’d prefer that, if a query is already made, we’ll get all
the fields from the relevant parent.

The way this query for the deferred field is done (internally in Django) is by calling the model method
refresh_from_db(); that method can take an argument that tells it exactly which fields to fetch. Usually, when
getting the value of a deferred field, the function is called with the name of that field only. We override it and make sure
that whenever it is given names, we complement the list of names to include all the fields of relevant parent models.

6.2.5 Messed up id fields

On one hand: With Mutli Table Inheritance, for each of the parents, the child gets a parent_ptr one-to-one field
— which means, there’s also a parent_ptr_id column in the table (and field in the model, which we care a lot less
about).

On the other hand, the pointer-field to the first parent is also taken as the Child’s primary key — by default, Child has
no id field.

‘We can make our own primary-key id field, that’s easy; but with the kind of use we have in mind, we’d want all these
. .._ptr_id fields to also have just the same value as the id field. In fact, we don’t want them at all — we’d much
prefer if the original id field is used instead. To achieve this, we need to define these fields more-or-less explicitly, and
set them to all point to the same database column. This requires some messing with internals (Django isn’t really built
to have columns shared between fields this way).

The solution involves a special type Foreign-Key field “family” — VirtualForeignKey, VirtualOneToOneField and
VirtualParentLink; the former does the heavy lifting, and the latter two put a friendlier face on it. Making them
work also requires some changes in the Django model _meta implementation — we define a subclass of the relevant
Django class (django.db.model.options.Options) and plug it into the model.

6.2. Problems (and solutions) 19

https://docs.djangoproject.com/en/3.2/ref/models/instances/#django.db.models.Model.refresh_from_db

Broken-Down-Models

20

Chapter 6. What is really going on here

CHAPTER
SEVEN

BENCHMARKS

Benchmarks do not reflect your use case

Always take benchmarks with a grain of salt. The numbers reported here should not be taken as a promise or guarantee
of any kind; they are presented in order to give an indication of the order-of-magnitude of results one may achieve. If
you use it in your own project, the numbers are likely to be different.

This library was used to refactor a model which, indeed, had a table with 43 columns and a few million rows. Five
parts were broken out, leaving a core of 13 columns. To measure performance in conditions that resemble a production
load, we used the following setup:

* Out of measurement, set up a pool of 50K record ids
* Start 50 threads. Each thread:

— Gets 100 ids from the pool, at random (for tests which update records, the sets of ids for threads are disjoint;
otherwise, allow overlaps)

— Performs the test with all its ids
* Time until all threads complete.

This was performed on Postgres; first, on the database before break-down, after VACUUM ANALYZE on the whole
database; then performed the break-down, VACUUM FULL on the main table, and ran the tests again.

These are the tests we did, and the performance changes we got. Notice that, as might be expected, some benchmarks
deteriorate.

get: +14%
Fetch each objects, that is Model.objects.get(id=id) for each id.

get-info: +2%
Fetch object and access a non-core field. In the broken-down case, select_related() was used.

We do not consider this change significant.

save-core: +14%
Fetch each object, change core field and save.

save-core-fields: +7%
Fetch each object, change core field and save with update_fields=.

save-core-bulk: +8%
Fetch all objects with filter(id__in=ids), change a core field in each, save using bulk_update().

With bulk_update() the specific fields to update are named.

21

Broken-Down-Models

save-non-core: -13%
Fetch each object, change a non-core field and save. In the broken-down case, this implies saving to two tables.

save-non-core-fields: -4%
Fetch each object, change non-core field and save with update_fields=

save-non-core-bulk: +9%
Fetch all objects with filter(id__in=ids), change a non-core field in each, save using bulk_update().

With bulk_update () the specific fields to update are named.

22 Chapter 7. Benchmarks

CHAPTER
EIGHT

PACKAGE REFERENCE

8.1 bdmodels.models

class bdmodels.models.BrokenDownModel (*args, **kwargs)
Bases: Model

Base class to replace models.Model for broken-down models.

When using it, make sure to make it the first base-class of your model, so that its modified metaclass replaces
the regular Model metaclass.

It also specifies its own Manager, BrokenDownManager:; if you have custom managers on your model, use that
as your base manager.

Some Model methods are overridden just to change their implementation; notably, some checks are reimple-
mented and some checks are added.

The methods documented here are those which add functionality.

refresh_from_db (using=None, fields=None, *, all_parents: bool = False)
This method is overridden for two purposes.

One is to make sure fetching any parent attribute fetches the whole parent.

The other is to add the all_parents argument, which can be used to reload the object in full, canceling
deferrals. Since all_parents makes the model load all the fields, using it together with fields makes
no sense and is an error.

getattr_if_loaded(arttr: str, default=None)

Access an attribute (field), only if set specifically for the instance. This allows querying fields without
causing unnecessary database round-trips.

class bdmodels.models.BrokenDownManager (*args, **kwargs)
Basic Manager for broken-down models.

Connects the model to a BrokenDownQuerySet (and inherits its methods, as it is built from it).

class bdmodels.models.BrokenDownQuerySet (*args, **kwargs)
Bases: QuerySet

Special queryset for use with broken-down models.

select_related(*fields)
Fix select_related() for correct handling of parent deferrals.

23

https://docs.djangoproject.com/en/3.2/ref/models/instances/#django.db.models.Model
https://docs.djangoproject.com/en/3.2/ref/models/instances/#django.db.models.Model
https://docs.djangoproject.com/en/3.2/ref/models/querysets/#django.db.models.query.QuerySet
https://docs.djangoproject.com/en/3.2/ref/models/querysets/#django.db.models.query.QuerySet.select_related

Broken-Down-Models

Note: Of necessity, this means that if a parent is select_related, previous “only” is overridden and ig-
nored. We make no effort to distinguish between deferrals created manually by the user, and those created
automatically to defer parents.

fetch_all_parents()

Select all fields in the model for immediate fetching, as if this was not a broken-down model.
This will make the query join all the parent tables.

bulk_create (objs, batch_size=None, ignore_conflicts=False, update_conflicts=False, update_fields=None,
unique_fields=None)

Insert each of the instances into the database. Do not call save() on each of the instances, do not send any
pre/post_save signals.

Setting the primary key attribute, if it is not set, is required for broken-down models; so if
the PK is an autoincrement field, the database feature can_return_rows_from_bulk_insert
(can_return_ids_from_bulk_insert on older Django versions) is required.

The parameters update_conflicts, update_fields and unique_fields are present in order to match
the API of Django>=4.1, but updating on conflicts in bulk creation is currently not supported.

8.2 bdmodels.fields

class bdmodels.fields.VirtualForeignKey (to, from_field, on_delete, related_name=None,
related_query_name=None, limit_choices_to=None,
parent_link=False, to_field=None, db_constraint=False,
**kwargs)

Bases: ForeignKey
A reference to a foreign object, based on an existing field

This is just like a ForeignKey with the exception that, rather than creating a related *_id field to hold the id of
the referenced object, it uses one of the existing fields of the model.

The name of the field to be used is given as the required parameter from_field.

Since the assumption is that the existing field serves other purposes (either it is interesting in itself, or the id it
holds references more than one object), we limit changes through this field. Thus, Attempts to change the field’s
value are blocked. Accordingly, it must be non-editable, and its on_delete rule must not change the field’s
value. Similarly, a default does not make sense.

Adding constraints would make sense — but this is currently not supported.
If an index is needed, it should be defined on the concrete field.

class bdmodels.fields.VirtualOneToOneField (zo, from_field, on_delete, to_field=None, **kwargs)
Bases: OneToOneField, VirtualForeignKey

One-to-one relationship based on existing field

This field is to a OneToOneField as a VirtualForeignKey is to a ForeignKey, and vice versa — it is also to
VirtualForeignKey as a OneToOneField is to a ForeignKey.

class bdmodels. fields.VirtualParentLink(to, from_field='"id', on_delete=<function CASCADE>,
to_field=None, **kwargs)

24 Chapter 8. Package reference

https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/3.2/ref/models/fields/#django.db.models.ForeignKey

Broken-Down-Models

Bases: VirtualOneToOneField
A VirtualOneToOneField that is also a parent link

The most common use for VirtualOneToOneField while breaking down models is for a field that is also a link
to a parent model, and whose base field is the model’s primary key.

This is mostly a shorthand for this use-case — the parent_link attribute is set to True, and the from_field
has a default of 'id"' (using the model’s actual PK is more involved, and is left for the future).

8.3 bdmodels.migration_ops

bdmodels.migration_ops.AddVirtualField (*, model_name: str, name: str, field)
A thin wrapper — limit AddField to act on the model and not on the database.

Parameters
* model_name — The model where the field is to be added
* name — The name of the field to be added
o field — The (virtual) field to be added

class bdmodels.migration_ops.CopyDataToPartial (*args, **kwargs)

A migration operation for moving data from a complete model, to a model which has some of the complete
model’s fields, efficiently.

This is useful when breaking down a large model to parts.

This is a data operation — it moves data, does not change schema; the kind of operation typically written as a
RunPython operation.

Implementation
The forwards direction of the operation uses SQL INSERT-SELECT to create the rows in the table of the
partial model. The backwards side uses UPDATE with a join to copy data from the partial model’s table into
(existing) rows of the complete model’s table.

Compatibility
While INSERT-SELECT is standard SQL, UPDATE with a join (A.K.A UPDATE-FROM) is not. The library
currently uses the PostgreSQL syntax, which is also supported by SQLite >= 3.3.0; for this reason, the
backwards side of this migration operation only works with these database backends. Until this is fixed,
users who need this operation with other backends can write it as a RunSQL operation.

The SQLite documentation reviews support of this feature in different systems, see there for details.

__init__ (full_model_name: str, part_model_name: str, elidable: bool = True)

Parameters
¢ full_model_name — The name of the full model (which at this point has all the fields)

¢ part_model_name — The name of the partial model (whose fields are a PK and some fields
copied from the full model)

» elidable — Specifies if this operation can be elided when migrations are squashed

8.3. bdmodels.migration_ops 25

https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.AddField
https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.RunPython
https://docs.djangoproject.com/en/3.2/ref/migration-operations/#django.db.migrations.operations.RunSQL
https://www.sqlite.org/lang_update.html#update_from_in_other_sql_database_engines

Broken-Down-Models

26

Chapter 8. Package reference

CHAPTER
NINE

CONTRIBUTION GUIDE

Contributions to this project, in all forms, are welcome. At this point, we do not have formal governance or roles; the
community that we hope to form around this code will set them up as necessary. The project is originally developed
and shepherded by Matific.

9.1 Community

The project is run and managed on Github. For issues or pull requests, please use the tools provided there. For questions
or support, please reach out to project contributors:

Contributor | Django Forum | Github | Other
Shai Berger | shaib shaib Twitter: @shaib_il

In all communications and actions related to this project we ask that you respect the code of conduct we blatantly copied
from Django [*].

9.1.1 Code of Conduct

* Be friendly and patient.

* Be welcoming. We strive to be a community that welcomes and supports people of all backgrounds and identities.
This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour, immigration
status, social and economic class, educational level, sex, sexual orientation, gender identity and expression, age,
size, family status, political belief, religion, and mental and physical ability.

* Be considerate. Your work will be used by other people, and you in turn will depend on the work of others.
Any decision you take will affect users and colleagues, and you should take those consequences into account
when making decisions. Remember that we’re a world-wide community, so you might not be communicating in
someone else’s primary language.

* Be respectful. Not all of us will agree all the time, but disagreement is no excuse for poor behavior and poor
manners. We might all experience some frustration now and then, but we cannot allow that frustration to turn into
a personal attack. It’s important to remember that a community where people feel uncomfortable or threatened
is not a productive one. Members of our community should be respectful when dealing with other members as
well as with people outside our community.

* Be careful in the words that you choose. We are a community of professionals, and we conduct ourselves pro-
fessionally. Be kind to others. Do not insult or put down other participants. Harassment and other exclusionary
behavior aren’t acceptable. This includes, but is not limited to:

— Violent threats or language directed against another person.

27

https://www.matific.com/
https://github.com/Matific/broken-down-models
https://forum.djangoproject.com
https://twitter.com/shaib_il/
https://www.djangoproject.com/conduct/

Broken-Down-Models

Discriminatory jokes and language.

Posting sexually explicit or violent material.

Posting (or threatening to post) other people’s personally identifying information (‘“doxing”).

Personal insults, especially those using racist or sexist terms.

Unwelcome sexual attention.

Advocating for, or encouraging, any of the above behavior.
— Repeated harassment of others. In general, if someone asks you to stop, then stop.

* When we disagree, try to understand why. Disagreements, both social and technical, happen all the time and
this project is no exception. It is important that we resolve disagreements and differing views constructively.
Remember that we’re different. The strength of the project comes from its varied community, people from a
wide range of backgrounds. Different people have different perspectives on issues. Being unable to understand
why someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to err and blaming
each other doesn’t get us anywhere. Instead, focus on helping to resolve issues and learning from mistakes.

9.2 Technically

The code and documentation for the project are included in the same repository. Changes to code should be accompa-
nied by respective changes to tests and documentation, where relevant.

The project is tested against Python>=3.8 and supported versions of Django (3.2.x, 4.0.x and the upcoming 4.1.x at the
time this is written), as well as Django’s main branch. We strongly recommend the latest stable point-release of each
of the above.

We use poetry to manage builds and tox to manage tests.
If you want to dive into the code, we highly recommend reading the detailed explanations.
Tests are collected in several groups:

* Tests which do not require database interaction are in the tests.py module of the bdmodels package. These
are mostly about the construction of fields and models.

 Tests which do require database interaction have been put into a test project, test_bdmodels. These include:

Tests for querying, in testapp. This is an app that defines the models to be used in tests, and the tests that
use them.

A special module for profiling, testapp/test_profile.py. See its docstring for details.

Tests for the migration operations, in an app called testmigs.

Test apps brought over from Django’s test suite, in order to validate further uses of relation fields with our
Virtual relation fields; these require some adaptation, which is still a work in progress.

28 Chapter 9. Contribution Guide

https://python-poetry.org/
https://tox.readthedocs.io/en/latest/

CHAPTER
TEN

INDICES AND TABLES

* genindex
* modindex

¢ search

29

Broken-Down-Models

30

Chapter 10. Indices and tables

b

bdmodels. fields, 24
bdmodels.migration_ops, 25
bdmodels.models, 23

PYTHON MODULE INDEX

31

Broken-Down-Models

32

Python Module Index

Symbols

R

__init__Q (bdmodels.migration_ops.CopyDataToPartial refresh_from_db()

method), 25

A

AddVirtualField() (in module
els.migration_ops), 25

B

bdmodels. fields
module, 24

bdmodels.migration_ops
module, 25

bdmodels.models
module, 23

bdmod-

BrokenDownManager (class in bdmodels.models), 23
BrokenDownModel (class in bdmodels.models), 23
BrokenDownQuerySet (class in bdmodels.models), 23

bulk_create()
els.models. BrokenDownQuerySet
24

C

CopyDataToPartial (class in
els.migration_ops), 25

F

fetch_all_parents()
els.models. BrokenDownQuerySet
24

G

getattr_if loaded()
els.models.BrokenDownModel
23

M

module
bdmodels. fields, 24
bdmodels.migration_ops, 25
bdmodels.models, 23

(bdmod-
method),

bdmod-

(bdmod-
method),

(bdmod-
method),

els.models.BrokenDownModel
23

S

select_related()
els.models.BrokenDownQuerySet
23

\Y

INDEX

(bdmod-
method),

(bdmod-
method),

VirtualForeignKey (class in bdmodels.fields), 24
VirtualOneToOneField (class in bdmodels.fields), 24
VirtualParentLink (class in bdmodels.fields), 24

33

	What is this?
	How?

	Using Broken-Down-Models
	Installation
	Requirements

	Usage
	Limitations
	The Refactoring Process

	Rewriting Models
	Migrations
	Optimizing Queries
	Generally
	If it’s the User model

	What is really going on here
	General Idea
	Problems (and solutions)
	Field clash
	Implicit Joins
	Broken select_related()
	Make accessed fields fetch their whole parent
	Messed up id fields

	Benchmarks
	Package reference
	bdmodels.models
	bdmodels.fields
	bdmodels.migration_ops

	Contribution Guide
	Community
	Code of Conduct

	Technically

	Indices and tables
	Python Module Index
	Index

